国产精品久久久久久久久软件,国产成人久久久精品二区三区,国产成人无码一区二区三区在线 ,大又大粗又爽又黄少妇毛片,国产精品成人aaaaa网站

中國自動(dòng)化學(xué)會(huì)專家咨詢工作委員會(huì)指定宣傳媒體
新聞詳情
gkongbbs

從制造業(yè)數(shù)據(jù)中實(shí)現(xiàn)價(jià)值最大化的6個(gè)步驟

http://m.007sbw.cn 2022-04-27 17:11 《中華工控網(wǎng)》翻譯

制造商有海量的數(shù)據(jù),但往往沒有正確的工具來開發(fā)它。這里有極大的潛力可挖。但如果你沒有這些工具,你該從哪里開始?遵循這六個(gè)步驟,開始從你的數(shù)據(jù)中獲得盡可能多的價(jià)值。

1. 數(shù)據(jù)整合

在制造業(yè)中,新傳感器采集的可用數(shù)據(jù)激增,而傳統(tǒng)的數(shù)據(jù)系統(tǒng)在處理和整合這些信息與現(xiàn)有來源方面存在困難。你的業(yè)務(wù)流程依賴于清楚、可靠的數(shù)據(jù),從而帶來你在運(yùn)營效率、客戶滿意度、財(cái)務(wù)業(yè)績等方面所期望的結(jié)果。
建立合適的基礎(chǔ)設(shè)施來協(xié)調(diào)和集中來自任何數(shù)量或源類型的數(shù)據(jù),以確保在整個(gè)組織中使用通用定義,同時(shí)節(jié)省大量開發(fā)時(shí)間。

2. 數(shù)據(jù)治理

數(shù)據(jù)治理是成功的數(shù)據(jù)管理的一個(gè)主要組成部分。這是一個(gè)持續(xù)的過程,用于確定哪些數(shù)據(jù)對(duì)你的業(yè)務(wù)至關(guān)重要,并確保它保持正確的質(zhì)量水平。關(guān)鍵是要為你的企業(yè)確定正確類型的治理框架,并定義員工需要遵循的流程。

生產(chǎn)、運(yùn)營和業(yè)務(wù)對(duì)成功的看法都略有不同。你需要調(diào)整和管理你的數(shù)據(jù),以確保他們目標(biāo)一致。

3. 分析

數(shù)據(jù)可視化使你能夠以視覺上吸引人的格式瀏覽數(shù)據(jù),并得出對(duì)企業(yè)成功至關(guān)重要的結(jié)論。通過從完全不同的來源獲取數(shù)據(jù),對(duì)其進(jìn)行轉(zhuǎn)換,并將其顯示在最終用戶可以看到和理解的儀表板中,你可以深入分析重要的KPI和指標(biāo)。借助易于訪問的高級(jí)分析,找出差距和根本原因,并揭示趨勢(shì)。

4. 利益相關(guān)者權(quán)利

利益相關(guān)者的認(rèn)同和持續(xù)支持對(duì)于數(shù)據(jù)項(xiàng)目的成功至關(guān)重要。確保自動(dòng)化并在整個(gè)組織內(nèi)分享見解,讓每個(gè)人隨時(shí)隨地都能看到事情的進(jìn)展。

5. 變革管理

幾乎任何重大的技術(shù)或組織創(chuàng)新都需要對(duì)人們的工作方式做出同樣重大的改變。為了使項(xiàng)目成功并產(chǎn)生預(yù)期的價(jià)值,需要積極地管理組織變更。培訓(xùn)、啟用和支持您的團(tuán)隊(duì),以確保你擁有合適角色的合適用戶,從而確保成功部署。

6. 演進(jìn)

隨著你的不斷成長而發(fā)展!基于從第一步到第五步學(xué)到的知識(shí)進(jìn)行迭代。

成果

你能期望從這樣的數(shù)據(jù)倡議中看到什么樣的結(jié)果?這里有幾個(gè)例子。
 
       · 結(jié)合生產(chǎn)力和財(cái)務(wù)數(shù)據(jù),為生產(chǎn)經(jīng)理顯示每條生產(chǎn)線的近乎實(shí)時(shí)的利潤產(chǎn)出,以幫助確定任何維護(hù)問題的優(yōu)先級(jí)

· 將需求預(yù)測(cè)與生產(chǎn)計(jì)劃聯(lián)系起來,以確保供應(yīng)得到優(yōu)化,并確保正確的生產(chǎn)計(jì)劃到位,以限制低速SKU的過度生產(chǎn)

· 利用物聯(lián)網(wǎng)數(shù)據(jù)報(bào)告現(xiàn)場機(jī)器的健康狀況,主動(dòng)降低維護(hù)成本,從而更好地分配現(xiàn)場技術(shù)人員

一旦你通過這些基本步驟建立了基礎(chǔ),你就可以繼續(xù)探索高級(jí)分析和人工智能的可能性。

作者:Raz Nistor,Keyrus公司數(shù)據(jù)科學(xué)和CPG主任

文章原文:

6 Steps to Maximizing Value from Manufacturing Data

Manufacturers have tons of data but often don't have the right tools to explore it. There's a wealth of potential that's just waiting to be unleashed. But if you don’t have those tools in place, where do you start? Follow these six steps to start getting the most value possible from your data.

1. Data integration

In manufacturing, there’s an explosion of available data from new sensor sources, and legacy data systems struggle to process and combine this information with existing sources. Your business processes depend on clean, reliable data to produce the results you expect in terms of operational efficiency, customer satisfaction, financial performance, and more.

Set up the right infrastructure to harmonize and centralize your data from any number or type of sources to ensure that common definitions are used throughout the organization while saving significant development time.

2. Data governance

Data governance is a major component of successful data management. It’s a continuous process for identifying which data is critical to your business and ensuring it stays at the right level of quality. The key is to identify the right type of governance framework for your enterprise and to define the processes employees need to follow.

Production, operations, and the business all look at success slightly differently. You’ll need to align and govern your data to make sure they’re all looking at the same picture.

3. Analytics

Data visualizations allow you to explore your data in a visually appealing format and draw conclusions that are critical to the success of your business. By taking data from disparate sources, transforming it, and displaying it in dashboards where end users can see and understand it, you can drill in and analyze important KPIs and metrics. Find gaps and root causes, and uncover trends with easily accessible advanced analytics.

4. Stakeholder access

Stakeholder buy-in and continuous support are critical for data projects to succeed. Make sure to automate and share insights across the organization and allow everyone to see where things stand, any day, at all times.

5. Change management

Almost any significant technical or organizational initiative requires equally significant changes to the way people work. That organizational change needs to be actively managed in order for the project to be successful and generate the expected value. Train, enable, and support your team to ensure you have the right users in the right roles to ensure successful deployment.

6. Evolution

Evolve as you continue to grow! Iterate based on learnings from steps one through five.

Results

What kind of results can you expect to see from a data initiative like this? Here are a few examples.

Combined productivity and finance data to display the near real-time profit output of each line on the floor for production managers to help prioritize any maintenance issues
Connected demand forecasts with production schedules to ensure supply was optimized and that the right manufacturing schedules were in place to limit the overproduction of low-velocity SKUs
Proactively reduced maintenance costs using IoT data to report health of machines in the field, which leads to better allocation of field techs

Once you’ve laid the foundation with these basic steps, you can move on to exploring the art of the possible with advanced analytics and artificial intelligence.

About The Author
Raz Nistor is director of Data Science & CPG at Keyrus.

相關(guān)新聞
版權(quán)所有 中華工控網(wǎng) Copyright?2025 Gkong.com, All Rights Reserved