摘 要:廣域測量技術是近年來電力系統(tǒng)前沿技術中最活躍的領域之一。論述了廣域測量系統(tǒng)(Wide-Area MeasurementSystem,WAMS)在電力系統(tǒng)穩(wěn)態(tài)分析、全網(wǎng)動態(tài)過程記錄和暫態(tài)穩(wěn)定預測 及控制、電壓和頻率穩(wěn)定監(jiān)視及控制、低頻振蕩分析及抑制、全局反饋控制等方面的應用,對其應用前景做了簡要分析,并提出WAMS的發(fā)展規(guī)劃。
關鍵詞:廣域測量系統(tǒng)(WAMS);同步相量測量裝置;動態(tài)監(jiān)測
隨著電力系統(tǒng)總?cè)萘康牟粩嘣黾、網(wǎng)絡結構的不斷擴大、超高壓長距離輸電線路的增多以及用戶對電能質(zhì)量要求的逐漸提高,對電網(wǎng)的安全穩(wěn)定提出了更高的要求。建立可靠的電力系統(tǒng)運行監(jiān)視、分析和控制系統(tǒng),以保證電網(wǎng)的安全經(jīng)濟運行,已成為十分重要的問題。近來受到廣泛關注的廣域測量系統(tǒng)(Wide-area measurement system,WAMS)可能在一定程度上緩解目前對大規(guī);ヂ(lián)電力系統(tǒng)進行動態(tài)分析與控制的困難。
1安全穩(wěn)定控制系統(tǒng)
互聯(lián)網(wǎng)穩(wěn)定控制面臨著較多的問題:互聯(lián)系統(tǒng)的低頻振蕩問題及緊急控制等問題。如我國華中系統(tǒng)的低頻振蕩衰減時間較長,當系統(tǒng)出現(xiàn)故障時,華中系統(tǒng)的較長的動態(tài)過程勢必會通過聯(lián)絡線影響到華東系統(tǒng)。傳統(tǒng)的基于事件的就地控制不能夠充分觀察系統(tǒng)的動態(tài)過程,因而不能夠較好觀察系統(tǒng)的各種狀態(tài),比如某些系統(tǒng)目前無法較快地抑制低頻振蕩問題;陧憫膹V域穩(wěn)定控制增強了互聯(lián)網(wǎng)穩(wěn)定控制的可靠性和靈敏性。
目前的穩(wěn)定控制系統(tǒng),比如電氣制動、發(fā)電機快速勵磁、發(fā)電機組切除、自適應負荷減載及新興的靈活交流輸電等,發(fā)展到廣域控制都應該是基于廣域電力系統(tǒng)的信息:原來使用就地信息不能夠滿足控制對電力系統(tǒng)充分觀察的要求。廣域測量系統(tǒng)提高了電力系統(tǒng)的可觀察性,通過各種分析手段,進行系統(tǒng)動態(tài)過程的分析,如通過頻譜分析,可以實時計算出系統(tǒng)的振蕩模式、系統(tǒng)狀態(tài)量的變化趨勢等:從而提供給廣域控制充分的動態(tài)信息。
1.1 暫態(tài)穩(wěn)定預測及控制
當今投入實際工業(yè)應用的穩(wěn)定控制系統(tǒng)可分為兩種模式,即“離線計算、實時匹配”和“在線預決策、實時匹配”。但分析表明,大停電往往由“不可預見”的連鎖故障引起,在這種情況下以上兩種穩(wěn)定控制系統(tǒng)很可能無法響應。理論上最為完美的穩(wěn)定控制系統(tǒng)模式是“超實時計算、實時匹配”。這種模式假設在故障發(fā)生后進行快速的暫態(tài)分析以確定系統(tǒng)是否會失穩(wěn),若判斷系統(tǒng)失穩(wěn)則給出相應的控制措施以保證系統(tǒng)的暫態(tài)穩(wěn)定性。這種穩(wěn)定控制系統(tǒng)的整個分析計算、命令傳輸、執(zhí)行過程的時間極短,理論上可以對任何導致系統(tǒng)暫態(tài)失穩(wěn)的故障給出相應的穩(wěn)定控制措施,達到對各種系統(tǒng)運行工況、各種故障類型的完全自適應。
WAMS 在以下幾方面的應用有助于實現(xiàn)上述自適應實時控制系統(tǒng):
(1)對于 WAMS 提供的系統(tǒng)動態(tài)過程的時間序列響應,直接應用某種時間序列預測方法或人工智能方法預測系統(tǒng)未來的受擾軌跡,并判斷系統(tǒng)的穩(wěn)定性。但由于電力系統(tǒng)在動力學上的復雜性,這種直接外推方法的可靠性值得懷疑。
(2)以 WAMS 提供的系統(tǒng)故障后的狀態(tài)為初始值,在巨型機或 PC 機群上進行電力系統(tǒng)超實時暫態(tài)時域仿真,得到系統(tǒng)未來的受擾軌跡,從而判斷系統(tǒng)的穩(wěn)定性。僅就算法而言,這種方法是可靠的,但在連鎖故障的情況下,控制中心未必知道該方法需要的電力系統(tǒng)動態(tài)模型;再者,該方法要求的時域仿真的超實時度較高,目前對大規(guī)模系統(tǒng)而言可能還存在困難。
(3)基于 WAMS 提供的系統(tǒng)動態(tài)過程的時間序列響應,首先利用某種辨識方法得到一個簡化的系統(tǒng)動態(tài)模型,然后對該模型進行超實時仿真,得到系統(tǒng)未來的受擾軌跡,并判斷系統(tǒng)的穩(wěn)定性。這種方法的可靠性比第一種方法好,同時僅基于WAMS 提供的實測信息,不需知道第二種方法必需的故障后系統(tǒng)動態(tài)模型的先驗知識,應該是目前比較有前途的方法。
相對于暫態(tài)穩(wěn)定問題,靜態(tài)電壓穩(wěn)定和頻率穩(wěn)定屬于慢動態(tài)的范疇,更易于利用 WAMS 信息實現(xiàn)穩(wěn)定監(jiān)視和控制。如利用 WAMS 得到的各節(jié)點電壓相量測量值將系統(tǒng)等值成兩節(jié)點系統(tǒng),能快速給出電壓穩(wěn)定裕度;以各節(jié)點電壓相量測量值作為輸入變量,以潮流雅克比矩陣的最小奇異值作為電壓穩(wěn)定指標,用大量樣本訓練得到一個模糊神經(jīng)網(wǎng)絡作為電壓穩(wěn)定分類器,輸出變量為很安全、安全、警戒、危險、很危險等 5 種電壓安全水平;以 WAMS 提供的節(jié)點電壓相角差和發(fā)電機無功出力為輸入變量,應用決策樹快速評價系統(tǒng)的電壓安全水平。
3動態(tài)過程安全分析
3.1 低頻振蕩分析及抑制
隨著大電網(wǎng)的互聯(lián),區(qū)域間的低頻振蕩對互聯(lián)電力系統(tǒng)的安全穩(wěn)定運行構成了威脅。WAMS 可望在分析和抑制低頻振蕩方面發(fā)揮作用。直接將系統(tǒng)線性化狀態(tài)空間方程離散化,利用WAMS 提供的各離散時間點的測量值,通過最小二乘法計算線性化狀態(tài)空間方程的系數(shù)矩陣,進而計算該矩陣的特征根;基于 WAMS 提供的各離散時間點的測量值采用卡爾曼濾波方法計算系統(tǒng)的機電振蕩模式;應用快速傅立葉變換和小波分析對 WAMS 提供的節(jié)點間的電壓相角差振蕩時間曲線進行分析,提取低頻振蕩模式。與常規(guī)離線分析相比,基于 WAMS 的低頻振蕩分析具有更高的可信度。
通常僅基于本地信息的阻尼控制器(如 PSS)不能很好地抑制區(qū)域間的低頻振蕩,因為本地信息并不能很好反映區(qū)域間的振蕩模式,本地信號對于區(qū)域間的振蕩模式的可觀測性不好。WAMS 的出現(xiàn)為抑制區(qū)域間的低頻振蕩提供了強有力的工具,可通過 WAMS 獲取區(qū)域間的發(fā)電機相對轉(zhuǎn)子角和轉(zhuǎn)子角速度信號等全局信息作為阻尼控制器的反饋信號構成閉環(huán)控制。將采用 WAMS 信號的區(qū)間阻尼控制器附加到發(fā)電機勵磁控制器中,達到抑制區(qū)域間振蕩的目的;采用 WAMS 信號作為裝設于聯(lián)絡線上的 TCSC 裝置的控制輸入,基于線性 H∞控制理論設計了 TCSC 區(qū)間阻尼控制器采用 WAMS 信號作為控制器輸入時,需要引起重視的是 WAMS 信號的時滯(Time Delay)問題考慮時滯后閉環(huán)系統(tǒng)成為一個時滯系統(tǒng),若時滯過大可能引起閉環(huán)系統(tǒng)的不穩(wěn)定采用最小二乘預測算法由歷史 PMU 測量序列得到控制器當前的反饋輸入,沒有明確說明時滯的處理方法,但其采用的 H∞控制是一種魯棒控制方法,對由時滯造成的影響有一定抑制作用。
3.2 全局反饋控制
以往乃至目前的電力系統(tǒng)控制研究領域一直強調(diào)分散性/就地性,即對電力系統(tǒng)中的某一動態(tài)元件僅采用本地量測量構成反饋控制,從便于控制實現(xiàn)的角度追求控制的分散性/就地性毫無疑問是可以理解的,但通常電力系統(tǒng)的動態(tài)問題本質(zhì)上具有全局性(如暫態(tài)穩(wěn)定問題),而分散/就地控制只是通過本地量測量間接地包含一些全局信息,因此在提高全系統(tǒng)穩(wěn)定性上有一定局限性。隨著 WAMS的出現(xiàn)和發(fā)展,研究和實現(xiàn)基于 WAMS 信號的全局信息反饋與控制成為可能。